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The Use of Moments of X-ray Intensity in Space-Group Determination
I. Derivation of Theoretical Moments

By F.FosTER AND A. HARGREAVES
College of Science and Technology, Manchester 1, England

(Received 25 January 1963)

A comparison of theoretical and experimental moments of the intensities of X-ray reflexions from
a crystal provides a test for the crystal symmetry that can be used in conditions for which other
statistical tests for symmetry are invalid. Part I is an account of methods for deriving theoretical
moments which can be applied to a wide variety of problems.

1. Introduction

Several statistical tests have been developed and used
for the detection of symmetry elements in crystals
since Wilson (1949) showed that the probability
distributions of the intensities of X-ray reflexions
are different for centrosymmetric and non-centro-
symmetric crystals. A summary of these tests and
references to the more important papers are given in
International Tables for X-ray Crystallography (1959).
Most of the tests have been developed on the assump-
tion that the unit cell contains a large number of
crystallographically independent atoms of equal weight
distributed at random throughout the unit cell. The
modifications required when the atoms are not
distributed at random have been considered ex-
tensively (Lipson & Woolfson, 1952; Rogers & Wilson,
1953; Wilson, 1956; Herbstein & Schoening, 1957)
but those required when the atoms are small in
number, or differ in weight, or occupy both general
and special positions, have received less attention.
It has been shown that the latter problem is an
important one (Hargreaves, 1955) because an out-
standingly heavy atom — such as is often deliberately
introduced into a molecule to simplify the structure
determination — may modify the probability distribu-
tion of X-ray intensities for a centrosymmetrical
structure so that it approximates more closely to the
Wilson distribution for a non-centrosymmetrical
structure with atoms of equal weight than to the
distribution for a centrosymmetrical structure with

atoms of equal weight. But when the crystal consists
of atoms of different weights even an approximate
evaluation of the distribution is difficult (Karle &
Hauptman, 1953; Hauptman & Karle, 1953; Klug,
1958) and the problem is complicated because the
distribution then depends upon the presence or absence
of other symmetry elements besides centres; in
general, each space group or plane group has to be
considered separately.

Statistical tests for ecrystal symmetry, which are
valid when both light and heavy atoms are present,
have been devised for certain rather special cases

(Hargreaves, 1955, 1956; Collin, 1955; Sim, 1958q, b)
but it is desirable that a test should be available
which can be applied to a wide variety of distribu-
tions. It is the aim of this paper (Part I) and the
succeeding one (Part II; Foster & Hargreaves, 1963)
to show that a comparison of theoretical and ex-
perimental moments of intensity is suitable for this
purpose.

Part I is an account of a procedure for deriving
theoretical expressions for moments of intensity for
any numbers and relative weights of atoms in crystals
with triclinic, monoclinic and orthorhombic space
groups; special positions and hypersymmetry can be
taken into consideration. Part II, which is concerned
with the practical application of these results in the
determination of space group symmetry, is presented
so that it can be used without reference to the theory
developed in the present paper.

In practice it is convenient to express each intensity
Iy as a fraction, z,, of the local average intensity (I)q
(Howells, Phillips & Rogers, 1950) and to compare
theoretical and experimental moments of zg=I4/<I ).

The second moment of z, (22), is related to the
specific variance v, by the equation

(@Ey=v+1. (1)

Wilson (1951) has advocated the use of the variance
test for crystals with a small number of atoms, or
dominating heavy atoms, in the unit cell. Under the
latter conditions, however, the variance depends upon
the space group symmetry whereas Wilson has derived
theoretical expressions for two cases only, viz. crystals
with no symmetry and those with only centro-
symmetry. Our results confirm those of Wilson and
extend them to a much wider range of symmetries.

2. Random variable theory

2-1. The rth moment of intensity, {Ir), is calculated

for » experimentally observed intensities I(kkl) from
Ir(REl)

Iy=3 . (2)

I (4
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For the present argument it will be assumed that
I(hkl) are on the absolute scale and that the atomic
scattering factors f; are effectively constant for all
reflexions within the group. Equation (2) can then
be written in terms of the structure factors F(hkl) as

(o = 3 M)

ki n

F(hEkl) consists of series of terms of the type
cos 2mhx;, cos 2mky;, cos 2xlz;, sin 27ha;, sin 2xky; and
sin2gmlz;, where x;, y; and z; (=1, 2 ... m) are atomic
coordinates, and if these coordinates were known we
could calculate the sum in equation (3).

As a simple illustration consider two atoms, related
by a twofold axis, for which F(k)=2f cos 2zthx. Now
cos? 2mha can be represented by the series

@)

cos? 2zhx = {cos? §)+a, cos 4mhx
+ag cos 8whax + . . .a4r cos drmhx ,

where § is a random variable uniformly distributed
in the range (0 —2x) and, therefore,

(Fery = 2erfer {(coszr 6>+ %(a,, 2 cos dmhx

h=1

+...a4r X COS 4rnhx)} . (4)
r=1
Since

> cos 2nhx = %{

sin 2n+1)nz 1}
h=1

sin tx

we can write equation (4) as
(Fery =20fer {cos® O) + for(R(nw)/n) . (5)

Now because R(nz) is a bounded oscillating function
of n, R(nx)/n is a convergent oscillating sequence
which tends to zero as n tends to infinity; thus for
large » the experimental moment will approximate
to the value which would be obtained by considering
2mha to be a uniformly distributed random variable, 0.
A general structure factor could in principle be treated
similarly leading to an expression of the form

<F2r>:<F2r(61:, @i, 1/)1)>+B , (6)

where the first term on the right-hand side is the
moment obtained by replacing all arguments of the
form 2zha;, 2nky; and 27lz; by the random variables
0+, . and y;, and B is a bounded function which tends
to small values as the number of values A, k and [
becomes large. The problem of calculating the value
of B from z;, y; and z; is, in general, very difficult,
and for practical purposes it is impossible because
the atomic coordinates are unknown at the stage in
crystal structure determination when a statistical
analysis is needed. In practice, B is usually small
for a reasonable number of reflexions and it is suf-
ficient for our purpose to calculate the first term on
the right of equation (6). The first step, therefore,
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in the calculation of theoretical moments of intensity
is to make the substitutions

2mhxy=0:, 2rky:=q@: and 2zlzi=1vy;, (7

6+, @: and y; being subsequently treated as independent
random variables which are uniformly distributed
over the range (0—2x). It follows that the joint
probability distribution of 0;, ¢: and y; is of the form
1/(2x)® and

27 27 2n 27 27
(1«12r>=S S | S S
61=0 Om=0 ¢'¢1=0 ¢m=0 Yy1=0

o2 kidd d@id(pid’lpi
2 — 8
Swm=0F ' zl——Il (2n) ®)

2-2. The substitution process of equations (7) is
trivial for structure factors of the triclinie, monoclinic
and orthorhombic space groups because independence
of arguments is obvious, but for higher symmetries
some care is needed.

Consider, for example, the geometrical structure
factor for the plane group p6,

A =cos 2n(ha +ky) + cos 2n(kx— {h+k}y)
+cos 2n(hy —{h+k}x), (9)

for which independence of arguments is not obvious,
and which can be written as

A=cosx+cosf+cosy.

An examination of equation (9) reveals the linear
relation &+ f+y=0 and, therefore,

A =cos x+cos f+cos (x+f) . (10)

It must now be shown, if possible, that &« and §
are independent, uniformly distributed in the range
(0—27) and that, as for the triclinic, monoclinic and
orthorhombic space groups, the moments are inde-
pendent of % and k. This property of the moments
can be established for the present example (Appen-
dix 4) but it does not always hold for space groups
in the systems of high symmetry.

Finally, consider the plane group p4m for which

F = 3 fi (cos 2mhay cos 27ky; + cos 2mkx; cos 2mhy;)
i=1
(11)

No transformation can be found such that the random
variables are independent of all 2 and k. To calculate
moments we must specify some relation between
h and k, say k= Ah. The structure-factor expression
then becomes

F = 3 fi (cos 6; cos Ap;+cos A0; cos ;) ,

i=1

(12)

the moments of which depend upon the value of A.
Therefore in comparing theoretical and experimental

moments we must sample only those reflexions for
which k= 4h.
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The considerations which are illustrated in §2:2
must be applied to the structure factor expressions
for all the more complex symmetries; that is, the
expressions must be put in a form containing only
independent variables and dependence on indices
must be determined before moments are calculated.

3. Derivation of moments:
atoms in general positions

3-1. We shall derive moments for the intensity scat-
tered by the asymmetric unit in the unit cell. The
resulting moments would need to be multiplied by
suitable integers to put them on the absolute scale,
but these integers are eliminated when moments of
intensity are converted to moments of z (§1). Con-
sideration of the asymmetric unit, rather than the
complete unit cell, greatly simplifies the application
of the results derived in Part I to a systematic study
of a wide variety of space groups (Part II: Foster
& Hargreaves, 1963).
Let the structure factor for an asymmetric unit
containing » atoms be represented by
F=%‘fi5i+j21:fi77i, (13)
where £; and 7); are, in general, trigonometrical funec-
tions of the independent variables 0;, ¢; and ;. For
convenience the element of volume df:d:dy:/(27)3
will be denoted by dV; and integrals of the type

2 27 27 deidlptdl/)t
6., [ W) ———1
So So SD (06 @i 1) (2m)3

will be written as

S adVs.
143

On writing equation (13) as F'=A4 +jB the rth moment
of intensity is given by
= S .. S (A%+ B2y [1dV; (14)
7 n i=1
and, therefore, on expanding the integrand by the
binomial theorem we have
Iy = 2

Mas, or—s) - (15)

s'(r—s)

The quantity Mp, (p and ¢ even) in equation (15)
will be referred to as the partial moment of order
pq for the asymmetric unit. From equations (14) and
(15) it follows that

SAPBadV. (16)

=1

Mpq=S ...S AquHdVi=
143 Vn
Similarly we define the partial moment for one atom by

Mpg = S ErnadV, . (17)
Vi
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The moments My, can be derived by separating the
series A?B? into terms which are either zero or non-
zero on integration. For convenience of manipulation
of the series involved we shall use the following
notation:

n

2af=aft+ai+...a%

i=1

will be denoted by S(«) and
n
207,
i=1

where b; is not a member of the set a;, will be denoted
by S(«'). The double series

22‘ aalaocz — S‘ (aal 2 aag)

e ¥
= o' (a3®+ag*+ . .

+azl(a

) ata
2+a3‘2+

ai?+az?+ .. .a%2)
n 1)

will be denoted by S(«, §) and, in general, the m-tuple
series

n n n
23 Zaya.
i1=1 g

coadm (ke i)

will be denoted by S(oa, o2y .oy xm) and

n
2 3. Za;’;‘bfl ai...agr (ke .. in)
=1 g

by S(cxlﬁl, X2y X3y + « o5 Kmn) -
Since the m-tuple series consist of the sums of terms
of type

L3P am x1pB8 Ho2 am
aglay ... afm or aflbiai?...ai”

we can, from symmetry considerations, permute the
letters separated by commas in the brackets in any
way we please: thus S(x, )=8(f, «); S(x, 8, )=
S(B, x, y)=8(y, &, 8); S(x2f?, xs)=8(xs, ocgﬁl ) etc.
The rules for multiplying series are derived in
Appendix 1.
3:2. Integration of 8. We can write equation (13) as
F=8r(1)+jSr(11), (18)
where the suffix 7 denotes that the series contains

n
trigonometric factors. We will denote the series 3 f
i=1
by 8(«). Now ST(OCI, o2, - .., &m) consists of terms
of the type

f‘l f 1 ao §tm

which become, on integration,

m oy fo2 em

malo.mazo “e om0JirJis + o+ Jim
and therefore
SST(M, ooy oy Om)dV

= Miyo Miagy e » + Mo (K1, X2, ooy Gm).  (19)
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Similarly,

SST(a}, ok, ..., al)dV

= moal.moaz. . .moams((xl, K2y oo vy (Xm) 5

and

SST(oqﬂ}, xzf3, ...)AV
= malﬁl‘mazﬁz' . 'S(fxl‘*‘ﬂl, 0(2‘*‘/92, .o .)

and, in general,

( Sz(aupl, aeBly - o y1 yor ovey 0% 8%, .. )dV
= mazﬂl.mazﬁz. . .mylo.mygo. . .moél.m052. ..
S(o1+ 1, o2+ P, ooy Y1, V2, o0y 01, 02y 00 )
(20)

the primes vanishing because the distinction between
the terms for the real and imaginary parts does not
exist after integration.

For the triclinic, monoclinic and orthorhombic
space groups the partial moments my, are zero when
either p or ¢ is odd, but for higher symmetries non-
zero moments exist for p odd and ¢ even: in addition
mio and mo; are zero for all symmetries. My, exist,
for moments of intensity, only when both p and ¢
are even (equation (15)): by equations (16) and (18)
they are given by

Mpo = Ssz;(l)dv. (21)

My = S30)8(11)dV. (22)

3-3. Partial moments M po. The series expansions of
87(l) for r=1,2,...,8 are given in Appendix II.
To illustrate the method of using these series we shall
derive Mgo.

By equation (21)

Moo = S SS(1)dV,
whence, using equation (Al4),

Moo= 82(6)dV + 6§ S2(5, 1)dV + 10 523, 3)aV
+15S Sr(2, 4)dV + eoS Sr(3,2, 1)dV
+20S 82(3,1,1,1)dV+15{ 8z(4,1,1)dv
+15SST(2, 1,1,1, 1)dV
+45$ST(2, 2,1,1)dV+15 S Sr(2,2,2)dV
+§821,1,1,1, 1, 1)av

and therefore from equation (19), and omitting terms
containing mjo, which is zero, we obtain
Meo =msoS(6) + 107)’&%0/3(3, 3)
-+ 15m20m408(2, 4) + 15m§08(2, 2, 2) .
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Now, as in § A1-4 (Appendix I) and using equation
(A4), we derive the relations

S(2, 4)=28(2).S(4)— 8(6),
82, 2,2)=28(2).8(2, 2)-28(2, 4)
=83(2)+28(6)—38(2).8(4)
and

8(3, 3)=15%3)—8(6) ,
whence,

Moo= 15m3y8%(2) + {15maomao — 45m3y} S(2). S(4)
4-10m2, S2(3)+ {mso + 30m‘§0 — 15mgomao— 10m§0} S(6).

3-4. Partial moments My, As an example we shall
derive Maq.
By equation (22),

Moo = $5(1)S5(1)dV
whence, using equations (A10) and (Al2),
Mos = { {Sr(2)+ S2(1, 1)}{Sr(4) +482(31, 11)

+6’ST(21: 11: 11)+3ST(21’ 21)

+87(14, 18, 11, 11)}dV . (23)

Now by equations (A7) and (20) we have, for
multiplications involving a single series,

{sr@)sr@yav= " sr@aav+  s-, amav
= mesa 8(6) + magmoes S(2, 4)
S Sr(2)87(21, 21)dV
=2 { 82221, 2av + {8221, 2, 2)av
= 2masmos S (4, 2) +myma0S(2, 2, 2).
SST(2)ST(2I, 11, 11)dV = SST(zzl, 11, 114V
+2§ 8z, 218, 1)av + (822, 24, 13, 11)av
= meem3 S(4, 1, 1)+ 2moamarmor 8(3, 2, 1)
+ meomoem3, 8(2, 2, 1, 1).

The last expression is zero since mip=mo1=0 and
mpg = 0 if g is odd. Similarly the integrals of
ST(2)ST(119 119 11, 11); ST(2)-ST(31: 11)
and Sr(4!).Sz(1, 1)

are zero.

For the multiplications of double series we have,
as in equation (A8) and by equation (20),

{s201, 1)87(31, 182V
=2{sr@1, 11)av+2{s-a3, 1, 1)av
+ 2SST(3I, 111, 1)dV + SST(31, 11, 1,1)dV
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= 2m13m11S(4, 2)+2m13m10m01 S4,1,1)
+ 2mosmiim10S(3, 2, 1) +mesmormioS(3, 1, 1, 1).

SST(I, 1)Sz (21, 11, 11)dV
= 4SST(211, 118, 11)dV +2 S Sr(21, 111, 111)dV
+ 2S Sr(211, 1, 11, 11)dV

+4{ sr@, 11,1, 1987 + { 5o, 18, 11,1, 1)V
= dmpmumoiS(3, 2, 1)+ 2meem? S(2, 2, 2)
+ 2mizmaiom3; S(3,1,1,1)
+ dmoemiimiomn S(2,2, 1, 1)
+ moamgymi,8(2, 1, 1,1, 1).
The last two expressions are zero since mio=mo =
mu=0 and, by the same considerations, the integral

of Sz(1, 1)So(1t, 11, 11, 11) is also zero. The remaining
integral,

{ sr(1, 1)Sz (21, 20)av
=2{ 800121, 120av +4{ S(121, 21, 1)aV
+ SST(21, 2t 1,1)dV
= 2m}, 8(3, 3) +4mizmoem108(3, 2, 1)
+mg2m§08(29 2’ 1» 1)7
contains one non-zero term, wviz. 2m%S(3,3). On
adding all the non-zero terms in equation (23) we
have

Mas=3maomisS(2, 2, 2) + {maomos+ 6meamoz} S(2, 4)
+ 6mf2;5’(3, 3)+ma4S(6)

which becomes, on using the relationships in §3:3,

Mog=3maom3yS3(2)
+ {maomos+ 6mazmoz — Imaomis}S(2)S(4)
+6m?2,82(3)
+ {mza—maomos — 6meamon — 61, + Bmaom, }.S(6).

3-5. Partial moments Mor. Mo, are the same as Mo
with all m. replaced by mor, except that no odd
moments exist; for example

Mos=15m3,83(2) + {15mozmos— 45mpy} S(2)S(4)
+ {307)’1%2 — 15moemoa+ mOs}S(ﬁ)‘

3:6. Values of Mp and My, calculated by the
methods described in § 3-3 and § 3-4, are presented in
Appendix III. They are sufficient for evaluating the
first four moments of intensity for all space groups
in the triclinic, monoclinic and orthorhombic systems
and for some, though possibly not all, space groups
of higher symmetry. The expressions in Appendix 3
are simplified considerably for triclinic, monoeclinic
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and orthorhombic space groups for all of which
mpg=0 when either p or ¢ is odd (§ 3-2): the simplified
expressions have been used to evaluate the moments
presented in Part II1 (Foster & Hargreaves, 1963).
Space groups of higher symmetry are now under
examination.

3-7. Derivation of moments for P222. To illustrate
the general procedure for deriving expressions for

theoretical moments we shall consider the space group
P222 for which

A=cos 0 cos ¢ cosp, B=sin 0 sin ¢ sin y.

The partial moments mp, are obtained by equation
(17), which gives

2% a27 27
Mpg = g g g cos? f) sin? O cos? ¢ sing g cos? y sin? p
Y0 0 0

9 do d(pd_gu
2mp

On integration we obtain the numerical results

My Mgy

(f5)”°

Myg

(#)?° ()
in addition, msy=m12=0 for an orthorhombic space
group (§3-2). On substituting these values in the
expressions for Mzo, Moz, Mzz, M4o, Moq, qu, M24, .Mso
and Mo (Appendix III) and using equation (15)
we obtain

I = 18(2)
I2)y= $82(2)—4S(4)
(I3)= $5%2)—5355(2). 8(4) +555(6) .
For practical reasons (Foster & Hargreaves, 1963)

it is preferable to work in terms of the variable
z=I[{I) (§1) and so, since

@ = ATy
we have, finally,

{2y = 2—8(4)[482(2)
{z¥) = 6—95(4)/452(2) + S(6)/453(2) .

The fourth and higher moments of z can, of course,
be derived in a similar way.

The derivation of moment expressions for centro-
symmetrical space groups is relatively simple since
for such space groups equation (15) reduces to
<I">=Mfo.

4. Atoms in special positions

4-1. Centrosymmetrical space groups. When some
atoms are in special positions the most general form
which the structure factor can take is
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F=A423 fixs+BI fifi+C3 fiyi+D 3 fid:, (24)
g 81 S92 S3

where Y is the summation over the atoms in general
9
positions and ¥ X and X are the summations

51 S $3
over the atoms iﬁ tﬁe three possible types of special
position, ¢.e. with 2, 1 and 0 variables. For our
purpose the constants 4, B, €' and D can be replaced
by Ai=BJA, 2=C[4 and A3=D/A because the final
moments will be in terms of z; we shall therefore
write equation (24) as

F=G+ 2181+ 2282+ AsSs (25)

giving
(Iry={(@+ M1+ TeSat AaSa)) . (26)

Now the variables 0, ¢, and y associated with G are
different from those associated with Si, Sz and Ss;
therefore

(G (MuSu)y =Gy ASEy
{(A181)?r(A28p)%) = ((2131)2r><(1282)2t> elc.

which we represent by
HKIGKILY, ATAKIDKTE) ete.
On putting r=1 in equation (26) we have
Iy=L1L,y+ 2Ty + A5{I2y + A3{Is) (27)

and if, in the notation of § 3-1, we put a1 =G, ae= 415,
as= 4282, ag4= 23S;3 then

(%) ={841)) -

For the space groups under consideration odd moments
are zero, therefore

{2y = (@)Y +3S(2, 2)) = (G4 + H(SD
IS + ALY + 6{GR{ 2SI+ JB(SE)
- 73SBY} + B{A 1B(STYCSE) + A3A3(SE) (B)
+RA(STY (I}

or
=By + S +3 3 BN
r= TS
3
HOCLY ZIKEY . (28)
Similarly -
(I3y=(8(6))+15(S(4, 2))+15(S(2, 2, 2))

giving

3 3
(IBBy=I3+ 3 2L+ 15{5y 2 A1)
r=1 r=1
3 3 3
F15{1)) 3 IRy +45(1,5 3 3 2203 Lry{Is)
r=1 TS

3 3
+15 3 3 M 22KIEYLsy + 90452543 (I y{L=){I5)
r¥s (29)

4-2. Non-centrosymmetrical space groups. The most
general expression can be written
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F=Gr+ 21181+ A2S:r+ A3Ssr

+7(Gr+ 21811+ AeSer+ A38ar)  (30)

in which the contribution for the rth type of special
position has been written as

F=2(8r+jSr1) .
Following the notation of § 3-1, putting

ar = Gr, a2 = MSir, a3 = AeS2r, as = A3S3r

by = Gy, be = ASiu, bs = 228, bs = A38ar,
we can write equation (30) as
F=8(1)+58(11) (31)

giving
(IHy=<82(1) + 82(11) ) ={8(2) + 8(21))
as only even powers are retained. Now
gy ={Gry+<G1); {Iy=<Sir)+<Str)

etc.; therefore

Iy =y + ATy + A L)+ A5(Lsy . (32)
The second moment of intensity is
(I2)=(84(1) +28%(1) 8%(11) + 84(11))
whence
(I2)y={8(4)) +3{8(2, 2))+3<8(2", 21))
+2(8(221)>+2{8(2, 21))+ (S(4?)) . (33)

If we now notice that
I3y ={G%+26G367 +G7)
and that for these space groups
(GRy=<GD=Up/2,

with similar results for Iy, I and I3, we deduce
I=(By+ 3Ty +2 3 2 BN
+4<Ig>§;zz<lr> . (34)
Similarly,
3y = (By+ 2 2K+ KTy 2 B
FOCT) 3 R+ 18CT5) = 3 AR

3 3
+9 33 BRI+ 382 2223 T1 )L ){Is) .
r¥8 (35)

5. Hypersymmetry

It is possible in theory, though rarely in practice,
to allow for the effects of hypersymmetry (Rogers &
Wilson, 1953). As an example we shall consider the
case of the asymmetric unit of pmg consisting of K
parallel centrosymmetrical sub-units. The effective
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asymmetric unit is now half one of the sub-units
and contains n/2K atoms, where n is the number of
atoms in the asymmetric unit of the unit cell. Let
x;, y¥; be the coordinates of the centre of symmetry
of the jth sub-unit and let x:, yir be the coordinates
of the i¢th atom in the jth effective asymmetric unit
relative to the centre of symmetry of the jth sub-unit.
The coordinates of the ith atom relative to the origin
of the unit cell are therefore x;+ir, y;+ yir. If we now
replace 2mhx;, 27tky; by o, f; and 2mhasr, 27tkys by
0:, @i the structure factor expression is
njeK
F= 5' COS o} COS ,37 2 f, cos 0; cos @;
1
= n/2K

+ 2 sin &; sin /3, Zf, sin §; sing; (36)

which can be written as
F=A'"A+B'B.

The «j, B; are independent of 0;, ¢;; therefore we
have, on taking moments,

<I> =Mé0M20+M62M02

12y =M oM 40+ 6 M 5o Moo+ Moy Mos

I3y =M Moo+ 15M ;. Mao+ 15M 3 Mo+ Mo Mos, (37)

where
Mrs={A7Bs) and M, ={ArBs).

Now because the expressions for A! and B! are of
the same form as those for 4 and B we need only
derive the partial moments Mr,, M, being directly
obtainable by putting f: equal to unity in the ex-
pression for M,; and assuming that there are K equal
atoms. Any series S%(w), therefore, in the expression
for M.s becomes K? in the expression for M,,. The
partial moments mys are

Moy Moy Mgy Mg Moy Myg Mgy Mgy Mog
P A 1
84 64 64 256 256 256 256
and, using the expressions for M7, given in Appendix 3,
we have

Moo=Mopz=8(2)/4, Myy=Mys,=K[4

Moo= 82(2)/16 —38(4)/16, M, =K?/16—3K/16
Mao=Mos=382(2)/16 —3S5(4)/186,
My=My=3K2/16—-3K/16

which give, by equation (37),

Iy =K82)/8

(%) =%(2K2— §K)5%(2) — g5(K?

—$K)S(4) .
Similarly
I3y = fBOKs— 4K+ BKSH2)

— {42 K3 —135K2 25K }8(2)S(4)
+5i{ 10K — 23K 2 + 25K }5(6) .

MOMENTS OF X-RAY INTENSITY IN SPACE-GROUP DETERMINATION. I

APPENDIX I

Al-l. The series S(o, &2, ..., xm) (§3-1) consists of
terms of the type aflag?...al™ (i15d2% ... F+in); from
symmetry its value is 1nvar1ant Wlth respect to
permutations of the indices ;. Let Sk(oi1, o2, - .., xm)
represent the m-tuple series which does not contain

a particular term ax and let us assume that
S((xl, K2 ooy OCm)

m
= Zaj‘{Ai(oq, K2y o
i=1

soam)+R, (Al)

oy Ki=1y Ki4ly o

where A; is a series whose terms do not have «; as

an index. On putting ax =0 we have R =
Sk (o1, o2, «..y &m), and from the definition of
S(o1, &2, oy xm) (§3-1) the coefficient of af in (Al)

is Sk(xe, a3, ..., xm). If o¢ and o« are interchanged
the series S(xi1, &g, ..., am) is unchanged, and there-
fore the coefficient of a%} is unchanged, giving

Ai(0css 62y « v oy Kimly Kitly oo vy Km)
=SK((X2, KBy o0 0y Kiy oo .,ocm) N

from which

Ai(oq, K2y o0 0y Ki—1y Ki+ly oo oy (xm)

=SK(062, KBy o ooy Ki—1y K1y Ki+ly oo oy (xm)
giving, finally,
S(o1, X2y oo oy Km)
m .
= 2 aZ Sr(x1, 662y « v vy Kicly Kidly « v vy Om)
+ Sklo1, o2, <oy im) . (A2)

Another result which follows immediately from the
definitions of § and Sk is

n
2 a% Sk(o, oz,
=1

ey Ki—1y Kitly o ooy ocm)

= S(x1, X2y v oy &) -

(A3)

Al-2. Multiplication of series. Consider the product
a%S(o1, &2, ..., m). From equation (A2) we have
a’f,’gS(oq, K2y ooy ocm)

m
= Z a‘}‘g”;S’K(oq, K2y .
i=1

ey Kimly Kitly ooy GKm)

+a%Sk(o, og, ..y Om).

Therefore, on summing over K and using equation
(A3),

S(ﬁ).S(ch, K2y o v vy (Xm)
m
= 3 S(x1, &2y « v .y Xi-1, ity Kitly « ooy Km)
i=1
+8(8, 01,62, -0y xm) . (Ad)
Example

8(0).8(cx, B, 9)=80+«, 8, y)+80+8, x, y)

+8(0+y, o, B)+S(x, B, v, 0
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Consider the product afSxk(Bz).S(x1, xe,
which, by equation (A2), can be written as

...,lxm)

m

3 a8y (Ba). Sk (o, oz, - -

i=1

¥} O‘m)
+“'?SK(192)SK(061, o2, ..

On using equation (A4) we obtain

oy Xi—1y Xi41y o«

s Bm) .

m
S afpte

i=1

X{ 2 Sx(oq, X2y o

j®t

.y ¢x_1+ﬂ2, ey Omly Kidly ooy Km)

+ Sk (B2, o1, 2y « v vy Kooy Kidly -0y txm)}

m
+a% X Sk(oa, a2, ..

i=1

-,lxi+/32) . "s‘xm)

+(15;ISK(ﬂ2, K1y X2y + o vy Km)

and on summing over K we have, finally,

-,Oim)=£§

i=1 j*i
s 01y ¢+ P, K1, oo

S(B1, B2). S(oxa, 2, . -
---,(Xj+/32, ..

m
+ 3 {S(B2, o1, &2, + . .y i1, i P, xit1, .-
i-1

x S(o1, oo, .y Km)

LK) (Xm)

G om)}
(A5)

+8(B1, o1, &2y + ooy i1, it P2, Kiv1, -
+ 801, &2y -« vy my P1, P2) -

There are four types of term in equation (A5);
those in which f; and 82 are added simultaneously to
different «’s, those in which £ is added to an «; and
B2 included as an extra index, those in which fs is
added to an «; and §; included as an extra index and
those in which §; and f: are included as extra indices.

Ezamples
S(ex, B).S(y, 9)
=8(cc+y, B+6)+S(x+38, B+y)+8(x+6,8,y)
+S(x+y, B, 8)+ S(ex, B+, 0)+ 8(ex, B+, 9)
+ S(ex, B, v, 0)
S8(3,1).82,1,1)
=8(,1,1,1)+28(2,4,1,1)+8(2,3,1,1, 1)
+8(3,3,1,1)+28(3, 2, 2, 1)+ 28(5, 2, 1)

+28(4, 3, 1)+25(4, 2, 2). (A6)

The rules for multiplication by m-tuple series can
be established by an induction procedure; they are
similar to those for double series, 1, B2, ..., fr being
added simultaneously to different o’s, 1, f2, ..., fra
being added simultaneously to different «’s and f
being included as an extra index and so on. For
example, in the product S2(2,1, 1) the additions in
groups of three give 28(4, 2, 2)+48(3, 3, 2); the fac-
tors 2 and 4 arise because 2,1,1 and 2,1,1 can be
added to give 4, 2, 2 in two ways, the two 1’s being
considered distinct; similarly 2,1,1 and 2, 1,1 can
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be added to give 3, 3,2 in four ways. On taking all
groups into account we obtain, finally,

82(2,1,1)=28(4, 2, 2)+485(3, 3, 2) +454, 2,1, 1)
+28(2,2,2,2)+45@3,3,1,1)+88@3,2,2, 1)
+482,2,2,1,1)+483,2,1,1, 1)+ 8(4,1,1,1, 1)
+82,2,1,1,1,1).

Al-3. The series S(f') and S(xfl, &2, ..., xm) Were
defined in §3-1: to find the multiplication rule for
products of the type S(81)S(x1, x2, ..., xm) we con-
sider the term b%S(x1, e, ...,am). From equation
(A2) we have
5S(x1, 62, « ooy Oim)

m
= Za%b‘}{SK(oq, X2, o

vy Gy CXgt1y oo oy )
i=1
+b§{SK((Xl, X2y « ey &m)
and on summing over K we have
S(BY). (o1, x2y oo vy Km)
m
=2 S(oq, K2y o0 vy Ki-ly aiﬂl, Kitly -« +r Xm)
i=1
+8(f, o, 08, vy xm) . (AT)

The multiplication rule in this case is formally the
same as that in equation (A4), oS! replacing o +f,
and it can be shown by the same method as before
that the rules for multiplication by m-tuple series
containing bs’s are analogous to the previous ones;
but, of course, the symbols must be interpreted
according to the new definitions. Thus, by analogy
with equation (A6),

S(x, B). S(yt, 61)
= S(oy1, f0*) + S(adt, By) + S(xd?, B, 1)
+ S(oyt, B, 04) + S(x, fyt, 61) + S(x, B, 1)

+8(x, B, 1, 61) (A8)
Al-4. From the relationship
S(ocm). Sloery o2y « v vy Xm-1)
=8(x1+0m, 02, o ooy Om-1)+ ... +S(x1, 52, .y m)
we have
S(ocl, K2y ooy ocm)=S(ocm).S(zx1, K2y o 00y (xm_1)
— series of order (m—1). (A9)

The series of order (m—1) can similarly be reduced
to series of order (m—2), a process which can be
continued until only products of single series remain.
Any m-tuple series can therefore be expressed in
terms of single series only.

Example
S82,1,1)=28(2).8(1,1)-28(3, 1)
=8(2){S2(1) - S(2)}—2{8(3)8(1)— S(4)}
=52(1)8(2)— S2(2) —28(3). S(1)+28(4).



1132

APPENDIX II

S2(1)=8(2)+ 8(1,1) (A10)
S3(1)=8(3)+38(2, 1)+ 8(1, 1, 1) (A11)
S4(1)=8(4)+458(3,1)+38(2,2)+68(2,1,1)
+8(1,1,1,1) (A12)
S5(1)=S(5)+58(4,1)+108(3,2) +108(3, 1, 1)
+158(2,2,1)+108(2,1,1,1)
+8(L,1,1,1,1) (Al13)

S¢(1)=S(6) +68(5, 1)+ 105(3, 3) +158(2, 4)
+608(3,2,1)+205(3,1,1,1)+158(4,1,1)
+158(2,1,1,1,1)+458(2,2,1, 1)

+158(2,2,2)+8(1,1,1,1,1, 1) (Al4)

S7(1)=8(7)+78(6,1)+218(5, 2) +218(5, 1, 1)
+358(4,3)+708(3, 3, 1)+ 1058(4, 2, 1)
+1058(3,2,2)+2108(3,2,1,1)+358(4, 1, 1,1)
+358(3,1,1,1,1)+10582,2,1,1, 1)
+218(2,1,1,1,1,1)+1058(2, 2,2, 1)
+8(1,1,1,1,1,1,1)

S8(1)=8(8) +8S8(7,1)+288(6, 2)+288(6, 1, 1)
+565(5,3)+1688(5,2,1)+568(5, 1, 1, 1)
+35.8(4,4)+2808(4, 3, 1) +280.8(3, 3, 2)
+2808(3,3,1,1)+2108(4, 2, 2)
+4208(4,2,1,1)+8408(3,2,2, 1) +
+5605(3,2,1,1,1)+708(4,1,1,1,1)
+568(3,1,1,1,1,1)+4208(2,2,2,1, 1)
+2108(2,2,1,1,1,1)+2858(2,1,1,1,1,1, 1)
+1058(2,2,2,2)+8(1,1,1,1,1,1,1,1) (Al6)

(A15)

APPENDIX III

Partial moments M,
M 20 = ’l)’L2oS (2)

Myp= 3m§OS2(2) + {M4o — 3m§0}S(4)

Mey= 15m§083(2) + {157)’1,207)240 — 457)’1,20}18(2) .S(4)
+ 10m2,52(3)
+ {3Om§0 — 15magmao — 10m5, + mso}S(6)

Mgo= 1057)’1,3084(2) + {287’&207’)%60 - 2807)?,207)2%0
—420m3gmao+ 840m3,}S(2) . S(6)
+ 2807”&207”%08(2)82(3)
+ {210mymas — 630ms, 1 82(2) S(4)
+ {315m3y + 35m3, — 210m;ma0} S2(4)
+ {56maomao — 560maom3} S(3) . S(5)
+ {560’”&20’7)’&%0 — 28maomeo +42Om§0m40
- 6307?2%0 — 56maomso— 357)’1,30 + mgo}S(S)

M 2o =maomo2S2(2) + {maz — maomoz} S(4)

MOMENTS OF X-RAY INTENSITY IN SPACE-GROUP DETERMINATION. I

M2y =3maomy S3(2) + {mzomos — Imaom?,
+ Bmaamos} S(2). S(4) + 6m, S3(3)
+ {6mz0mG, — maomos — 6Maezmoz + maea— 6mi, }S(6)

M g5 =3mZymo2S3(2) + {mozmao — Imozm,
+ 6moameo} S(2)S(4) + 4mi2mseS2(3)
+ {6mZymoz — mozmao — 6mazmiao +Mmaz
— 4m12m30}S(6)

M= 9m§0m§2 S42)+ {367)’&20771,027)%22 - 54m§0m(2)2
+ 3m5gmos+ 3mGamao} S2(2). S(4)
+ {27m§0m§2 - 3m§0mo4 — 36magmozmae
- 3m§2m4o +1 8m§2 + M4()m()4}82(4)
+ {Bmsomas — T2magmosmas + 72m2yma, — 6m3gmos
- 367)2%0771,%2 — 6m§27n4o ~+ 6meg2maz — 24‘)’)10277&127)%30}
x 8(2).8(6) + {36maomi,
+ 24m02m12m30}8(2) . 82(3) + {41n30m14
+ 24mgemio — 72m20mf2 — 48m02m12m30}8(3) .8(5)
+ {72maomi, + 72magmozmas — 6maoMag
- 54m§0m§2 + 6mEymoq — 6moamas + 48moemizmsy
+ 6msma0 + Mag — Mogmao — 18m3, — 24ma2mas
— 4m14m30}S(8)

Mgz =15m3;mo28%(2) + {15meomozmao + 45m3ymes
—90m3ymoz}S2(2) . S(4) + {45miymoe
— 15mogmaomos — 45m§0m22 + 157?2227)%40}82(4)
+ {157n207n42 — 30maomoamao — 60megmzemiae
— 90mE mas + 120m3ymos + meomoz
- 10m§0m02}8(2) . S(G) + {607)’&20’/)@30”’&12
+10m3moz}S(2) . 82(3) + {20msomsz
— 120mz0maomiz — 20m3ymoz + 6msomi2}S(3) . S(5)
+ {30maomoama + 120mzomizmao — 15magmas
+ 90m§0mgz - 90m§0moz — 15meemag + me2
+20mZymoz — 20maomaz — Bmsgnias
- ’msomoz}s(g)

Mos=1 5m20m32 83(2)+ {1 Smaomozmos+ 45m22m§2
— QOM2omgz}Sz(2) .S4)+ {45m20m82
— 15maomoenios — 457)2227)%%2 +1 5m22mo4}S 2(4)
+ {m20m06 + 12Om20m32 — 30magmoemoq
— 90maams + 15moamas — 90meam?,}8(2) . S(6)
+ 90’7)7,0277?,%28(2) . 8(3) + {3Om12m14
— 180mo2mi,}S(3) . S(5) + {30meomoamoz
— 90maom3, — Mmaomos + 90Mmaam3s — 1 5maamos
+ moe — 15moamos — 30maemas + 1 8077’1,027%?2}8(8)

APPENDIX IV
The geometrical structure factor of the plane group
p6 is
A =cos 2n(hx+ ky) + cos 2n{kx — (h+k)y}

+cos 2n{hy —(h+k)x} . (Al7)
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In order to show that the moments of 4 do not
depend on a linear relationship between % and k&
let us assume that Nih=Nok, where N; and Ns are
integers, and therefore we can put h=N24, k=N,
where A varies in such a way that 2 and & assume
integer values. If we now interpret 2niz and 2nly
as independent random variables, § and ¢ respec-
tively, equation (Al7) becomes

A=cos x+cos ff+cos (x+f) ,
=N+ N1p, f=N10—(N1+N2)p.
The rth moment of A4 is now
N (€4, 0(0, p) 5
s = ([ |5 | anapiins,

where the Jacobian is (N?4 N1 N2+ N2)-1 and the
integration is taken over the parallelogram P with
vertices at (0,0), (27N1, 27N2), (—27Ns, 27(N1+ N2))
and (—27(N1+ Nz), 22N1). Let I be

Szﬂ SznA'(oc, B)dodf;

0

where

on enclosing P in a rectangle R with sides of length
27(N1+ Ns), 2(2N1+ N») parallel to the axes « and f3,
the integral of Ar over R is (Ni+ Ng)(N2+2N1)1.
Now from the periodicity of the function 4 and from
the fact that the vertices of P'and R have coordinates
which are multiples of 27, the integral of A" over the
areas which are not common to P and R is equal to
(N2+42N,N2)I: therefore, the integral of Ar over P
is (N?4+ N Ns+ N3)I from which

(V24 N No+ N1 SS Ar(e, B)dxdp
P

- SgnS:nA'(oc, B)dxdp .

0

Acta Cryst. (1963). 16, 1133
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The variables No0+ N1p and N6 —(N1+N2)p can
therefore be replaced by « and 8, which are uniformly
distributed in the range (0-2x), and the moments
of A? are independent of XN; and N: giving
A=cos x+cos f+cos (x+f) as the effective geomet-
rical structure factor for statistical purposes. If we
now put O=(x+p)/2 and @=(x—p)/2 a similar
analysis to the above leads to 4 =cos 20 +2 cos 0 cos ¢
as another form for the purposes of statistical analysis.

We wish to thank Prof. L. R. Shenton for his
interest and advice on statistical matters.
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The Use of Moments of X-ray Intensity in Space-Group Determination.
II. Practical Application

By F. FosTER AND A. HARGREAVES

College of Science and Technology, Manchester 1, England

(Received 25 January 1963)

Simple expressions for evaluating theoretical moments of the intensities of X-ray reflexions are
tabulated. They cover crystals with any triclinic, monoclinic or orthorhombic space group and they
are valid when the unit cell contains a small number of atoms and atoms of widely differing weights;
consideration is given to the modifications required when atoms are present in special positions.
The evaluation and comparison of theoretical and experimental moments are described and illus-
trated by examples which could not have been studied by the usual statistical tests.

1. Introduction

The rth moment of the intensity of a group of X-ray
reflexions, {(I7), is defined as the average value of I7,

where values of I represent the intensities of the
individual reflexions.

The methods described in Part I (Foster & Har-
greaves, 1963), for deriving theoretical moments of



