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A comparison of theoretical and experimental moments of the intensities of X-ray reflexions from 
a crystal provides a test for the crystal symmetry that  can be used in conditions for which other 
statistical tests for symmetry are invalid. Part  I is an account of methods for deriving theoretical 
moments which can be applied to a wide variety of problems. 

1. Introduct ion 

Several s tat is t ical  tests have been developed and used 
for the detection of symmet ry  elements in crystals 
since Wilson (1949) showed tha t  the probabi l i ty  
dis t r ibut ions of the intensit ies of X-ray  reflexions 
are different for centrosymmetr ic  and non-centro- 
symmetr ic  crystals.  A s u m m a r y  of these tests and 
references to the more impor tan t  papers are given in 
International Tables for X-ray Crystallography (1959). 
Most of the tests have been developed on the assump- 
t ion tha t  the uni t  cell contains a large number  of 
crystal lographical ly independent  atoms of equal  weight 
d is t r ibuted at random throughout  the uni t  cell. The 
modificat ions required when the atoms are not 
d is t r ibuted at  r andom have been considered ex- 
tensively  (Lipson & Woolfson, 1952; Rogers & Wilson, 
1953; Wilson, 1956; Herbs te in  & Schoening, 1957) 
but  those required when the atoms are smal l  in  
number ,  or differ in weight, or occupy both general  
and special positions, have received less at tent ion.  
I t  has been shown tha t  the la t ter  problem is an 
impor tan t  one (Hargreaves, 1955) because an  out- 
s tandingly  heavy  atom - -  such as is often del iberately 
introduced into a molecule to s implify the structure 
determinat ion - -  m a y  modify  the probabi l i ty  distr ibu- 
t ion of X-ray  intensit ies for a centrosymmetr ica l  
s tructure so tha t  i t  approximates  more closely to the 
Wilson dis t r ibut ion for a non-centrosymmetr ical  
s t ructure  wi th  atoms of equal  weight t han  to the 
dis t r ibut ion for a cent rosymmetr ica l  s tructure with 
atoms of equal weight. But when the crystal consists 
of atoms of different  weights even an approximate  
evaluat ion of the  dis t r ibut ion is difficult  (Karle & 
Haup tman ,  1953; H a u p t m a n  & Karle,  1953; Klug,  
1958) and the  problem is complicated because the 
dis t r ibut ion then  depends upon the presence or absence 
of other s y m m e t r y  elements besides centres; in 
general, each space group or plane group has to be 
considered separately.  

Stat is t ical  tests for crystal  symmet ry ,  which are 
va l id  when both l ight  and  heavy  atoms are present,  
have been devised for certain ra ther  special cases 

(Hargreaves, 1955, 1956; Collin, 1955; Sim, 1958a, b) 
but  i t  is desirable tha t  a test  should be avai lable  
which can be applied to a wide var ie ty  of distr ibu- 
tions. I t  is the aim of this  paper  (Part  I) and the 
succeeding one (Part  I I ;  Foster  & Hargreaves,  1963) 
to show tha t  a comparison of theoretical  and ex- 
per imenta l  moments  of in tens i ty  is sui table for this  
purpose. 

Par t  I is an account of a procedure for deriving 
theoretical  expressions for moments  of in tens i ty  for 
any  numbers  and relat ive weights of atoms in crystals  
with triclinic, monoclinic and orthorhombic space 
groups; special positions and h y p e r s y m m e t r y  can be 
taken into consideration. Par t  II,  which is concerned 
with the practical  applicat ion of these results in the 
determinat ion of space group symmetry ,  is presented 
so tha t  it can be used without  reference to the theory  
developed in the present paper. 

In  practice it  is convenient to express each in tens i ty  
Io as a fraction, Zo, of the local average in tens i ty  <I>o 
(Howells, Phi l l ips  & Rogers, 1950) and to compare 
theoretical  and exper imental  moments  of Zo=Io/<I)o. 

The second moment  of z, <ze>, is re la ted to the 
specific variance v, by  the equat ion 

<z2>=v+ 1 . (1) 

Wilson (1951) has advocated the use of the var iance 
test  for crystals with a small  number  of atoms, or 
dominat ing heavy atoms, in  the uni t  cell. Under  the 
la t ter  conditions, however, the variance depends upon 
the space group symmet ry  whereas Wilson has derived 
theoretical  expressions for two cases only, viz. crystals  
wi th  no symmet ry  and  those with only centro- 
symmetry .  Our results confirm those of Wilson and 
extend them to a much  wider range of symmetr ies .  

2. R a n d o m  variable  theory 

2.1. The r th  moment  of intensi ty,  <It>, is calculated 
for n exper imenta l ly  observed intensit ies I(hkl) from 

Ir(hkl) 
<p> = 2  - -  (2) 

hkl n 
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For the  present  a rgument  i t  will  be assumed tha t  
I(hkl) are on the  absolute scale and  tha t  the atomic 
scattering factors f ,  are effectively constant  for all  
reflexions wi th in  the group. Equa t ion  (2) can then  
be wri t ten  in terms of the s tructure factors F(hkl) as 

F~'r(hkl) 
(F  2r) = -_~" - -  . (3) 

hkl Tb 

F(hIcl) consists of series of terms of the  type  
cos 2~hx~, cos 2~]cy~, cos 27dz~, sin 27~hx~, sin 2zky~ and  
sin2~/zi,  where xi, y~ and z~ (i-- 1, 2 . . .  m) are atomic 
coordinates, and  if these coordinates were known we 
could calculate the sum in equat ion (3). 

As a simple i l lus t ra t ion consider two atoms, related 
by  a twofold axis, for which F ( h ) = 2 f  cos 2~hx. :Now 
cos er 2~hx can be represented by  the series 

cos er 2zhx= (cos er 0 ) + a n  cos 47~hx 
+ as cos 8zehx + . . .  a4r COS 4rzehx, 

where 0 is a r andom variable  uni formly dis t r ibuted 
in the range ( 0 - 2 ~ )  and, therefore, 

( f ~ r )  = 2~r/~r cos~r O) + - ~ cos  ~ 

"t-.  • • a4r ~ COS 4 r ~ h z ) } .  h=l  (4) 

Since 

~ cos 2ahx = ½ {sin (2n + l --1} 
h= l  s i n  7~x 

we can write equat ion (4) as 

(F2r )=  22rf 2r ( c o s  2r O} + f2r(R(nx)/n)  . (5) 

:Now because R(nx) is a bounded oscillating funct ion 
of n, R(nx)/n is a convergent oscillating sequence 
which tends to zero as n tends to in f in i ty ;  thus  for 
large n the exper imental  moment  will  approximate  
to the value which would be obtained by  considering 
2ahx to be a uni formly dis t r ibuted random variable,  0. 
A general  s tructure factor could in principle be t reated 
s imi lar ly  leading to an  expression of the form 

(F2r) -~ (F2r(Oi, ~)i, ~i))--b B ,  (6) 

where the f irst  t e rm on the r ight -hand side is the 
momen t  obtained by  replacing all  a rguments  of the 
form 2zlhx~, 2~lcyi and 2zdzi by  the random var iables  
0~, ~ and  y~, and B is a bounded funct ion which tends 
to smal l  values as the number  of values h, k and 1 
becomes large. The problem of calculat ing the value 
of B from x~, y~ and z~ is, in general, very  difficult ,  
and  for pract ical  purposes i t  is impossible because 
the atomic coordinates are unknown at the stage in  
crystal  s tructure de terminat ion  when a s ta t is t ical  
analysis  is needed. In  practice, B is usual ly  smal l  
for a reasonable number  of reflexions and  it  is suf- 
f icient for our purpose to calculate the first  te rm on 
the r ight  of equat ion (6). The first  step, therefore, 

in  the calculation of theoretical  moments  of in tens i ty  
is to make  the subst i tut ions  

27~hxi = Oi, 27dcy~ = q~i and 2~lz~ = yJ~, (7) 

0~, ~ and y~i being subsequent ly  t reated as independent  
r andom var iables  which are un i formly  d i s t r ibu ted  
over the range ( 0 - 2 ~ ) .  I t  follows tha t  the jo int  
p robabi l i ty  d is t r ibut ion  of 0i, ~ and  yJi is of the form 
1/(2~)3 and  

(F2r )  . . . . . . . . . .  
01=0 Orn=O ~1=0 ~0rn = 0 ~pl=0 

~m=0 i=1 (2~)3  (8) 

2-2. The subs t i tu t ion  process of equat ions (7) is 
t r iv ia l  for s tructure factors of the triclinic,  monoclinic 
and  or thorhombic space groups because independence 
of arguments  is obvious, bu t  for higher  symmet r ies  
some care is needed. 

Consider, for example,  the  geometrical  s t ructure 
factor for the plane group p6, 

A = cos 2z(hx + ]cy) + cos 2~( /cx-  {h + ]c}y) 

+ c o s 2 ~ ( h y - { h + k } x ) ,  (9) 

for which independence of a rguments  is not  obvious, 
and  which can be wr i t t en  as 

A = cos a + cos # + cos y .  

An examina t ion  of equat ion (9) reveals the l inear  
re la t ion a + fl + y = 0 and, therefore, 

A --cos a + c o s  f l+cos  (a-t- fl) . (10) 

I t  mus t  now be shown, if possible, t ha t  a and fl 
are independent ,  un i formly  d is t r ibuted  in  the range 
( 0 - 2 ~ )  and  that ,  as for the triclinic, monoclinic and  
or thorhombic space groups, the moments  are inde- 
pendent  of h and  k. This proper ty  of the moment s  
can be establ ished for the present example  (Appen- 
dix 4) but  i t  does not  always hold for space groups 
in the systems of high symmet ry .  

Final ly ,  consider the plane group p4m for which 
n 

2' = ~ f ~  (cos 2uhx~ cos 2:~kyi + cos 2~/cx~ cos 2~hy~) . 
i=1 (11) 

:No t ransformat ion  can be found such tha t  the random 
variables  are independent  of all  h and k. To calculate 
moments  we mus t  specify some re la t ion between 
h and  k, say k =  ~th. The structure-factor expression 
then  becomes 

n 
2' = Z f i  (cos 0i cos ;tqgi + cos ~0i cos q~) , (12) 

i=1 

the  moments  of which depend upon the value of ), 
Therefore in  comparing theoretical  and exper imenta l  
moments  we mus t  sample only those reflexions for 
which k = ~h. 
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The considerations which are i l lus t ra ted in § 2.2 
mus t  be applied to the structure factor expressions 
for al l  the  more complex symmetr ies ;  tha t  is, the 
expressions mus t  be put  in  a form containing only 
independent  variables  and  dependence on indices 
must  be de termined before moments  are calculated. 

3 .  D e r i v a t i o n  o f  m o m e n t s :  
a t o m s  i n  g e n e r a l  p o s i t i o n s  

3.1. We shall  derive moments  for the in tens i ty  scat- 
tered b y  the asymmetr ic  uni t  in  the uni t  cell. The 
result ing moments  would need to be mul t ip l ied  by  
sui table integers to put  them on the absolute scale, 
bu t  these integers are e l iminated  when moments  of 
in tens i ty  are converted to moments  of z (§ 1). Con- 
s iderat ion of the asymmetr ic  unit ,  ra ther  t han  the 
complete uni t  cell, great ly  simplifies the applicat ion 
of the results derived in Par t  I to a systemat ic  s tudy  
of a wide var ie ty  of space groups (Part  I I :  Foster 
& Hargreaves,  1963). 

Let the structure factor for an asymmetric unit 
containing n atoms be represented by 

n n 

2 ' =  . ~ , f i ~ + j ~ ' f i ~ ,  (13) 
1 1 

where ~ and  ~ are, in general, t r igonometr ical  func- 
t ions of the independent  variables  0~, ~ and y~. For 
convenience the element  of volume dO~dq)~d~p~/(2z) a 
will  be denoted by  d V~ and integrals of the type  

0 0 0 a(O~, (pi, ~ )  ( 2 ~ )  3 

will  be wri t ten  as 

I no¢ dV~ . 

On wri t ing equat ion (13) as F = A  + j B  the r th  moment  
of in tens i ty  is given by  

f i " (p> . . . .  (A~.+ B~)~ H dV~ (1~) 
V1 Irn i = 1  

and, therefore, on expanding the in tegrand by  the 
binomial  theorem we have 

~=0 s! (r - s) l M~, 2(~-~) • (15) 

The quan t i ty  Mvq (p and q even) in equat ion (15) 
will  be referred to as the par t ia l  moment  of order 
pq for the asymmetr ic  unit .  F rom equations (14) and 
(15) i t  follows tha t  

l I ]71" V n i = 1 

Similar ly  we define the par t ia l  moment  for one atom by  

mpq = I ~p~qdV~. (17) 
g i  

The moments  ipq  c a n  be derived by  separat ing the  
series ApBq into terms which are either zero or non- 
zero on integration.  For convenience of manipu la t ion  
of the series involved we shall  use the following 
notat ion:  

a i ~ a  l ~ a 2 ~ . . . a  n 
i = 1  

will be denoted by  S (a )  and 

n 

2 ; b ? ,  
i = 1  

where bi is not a member  of the set a~, will be denoted 
by  S(a l ) .  The double series 

7/ 

..~ 2 a~a~ ~ = -.Y (a~ 1 .~ a.~ 2) 
i . ]  i=1 j . i  

~2 a l  ~2 = a~ q (a~ ~ + a~ 2 + . . .  a~ ) + a 2 ( a  1 -4- a~ 2 + . . .  a~ 2) 

+ a ~  ( a~ 2 + a.~ 2 + . . . a ~  ~ ) 

will  be denoted by  S (a, fl) and, in general, the  m-tuple 
series 

. . . .  i l  ~ i 2  • • • Z m  • " 

i l  = 1  i2 /m 

will be denoted by  S(a~, a2, . . . ,  ~ )  and  

~ ~ ~ " ~ 1 ~ ' ~  (~.'0:2 . . . ~xm . . .  . . . .  ~ m~-vz aim (il # i2  ~= ira) 
i l  = 1  ?"2 /m 

by  S(o~f l  ~, a2, o~, . . . ,  am) • 
Since the m-tuple series consist of the sums of te rms 

of type  
ae~,.e2 a .~ o r  f/..¢¢I ~ ,,'/.~2 OCm 

Z 1 ~ 2  " " " Sm ~ 1  ~Zl~Z2 • " " aim 

we can, from s y m m e t r y  considerations, permute  the 
letters separated by  commas in  the brackets  in  any  
way we please: thus  S ( a ,  f l ) = S ( f l ,  a) ;  S ( a ,  fl, 7 ) =  
s(~, ~, ~)=~(~, ~, ~); s(~fl~, ~ ) = ~ ( ~ ,  ~ )  etc. 

The rules for mul t ip ly ing  series are derived in  
Appendix  I. 

3.2. Integration of S. We can wri te  equat ion (13) as 

F =  ~(1 )+ jS~( l l ) ,  (]8) 

where the suffix T denotes tha t  the series contains 
R 

t r igonometric  factors. We will  denote the series ~Yf~ 
i=l 

by  S(a) .  Now ST(a1 ,  a2, . . . ,  am) consists of te rms 
of the type  r ~ 2  r .~ I :~ ,2  

J~l J~2 • " "J~m ~n ~2 • " " ~i~ n 

which become, on integration,  

m~10. m~20 . . . . . .  ~n0Jil Ji~ . - .  f~n 

and therefore 

I S~(~i, a~, . . . ,  ~m)dV 
= mai0 .  ma2o .  • • m ~ m o S  (0¢1, 0¢2, . . . ,  ~ m).  (19) 
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Similarly, 

I sT(o,~, ~ , . . . ,  ~,L)dV 
= mo~,l.mo~,2...mo~,mS(c~l, ~xe, . . . ,  ~xrn), 

and 

l sT(~,lZi, ~e~,...)dV 
= mo,1~l, m~,~.. .  S(~xl + ill, o~2 + fie, . . .  ) 

and, in general, 

l ST(~X~fl~, aefl~2,..., Yl, Ve , . . . ,  6~, 5~ , . . . )dV 
= m~2fll, m c ~ 2 f l 2  • . . mylo.  mr20. • .  mo~ 1 . mo~ 2 • . .  

s ( ~  + ~ ,  ~ + ~ ,  . . . ,  ~1, ~e, . . . ,  ~1, ~ ,  . . .  ) 

(2o) 

the primes vanishing because the distinction between 
the terms for the real and imaginary parts does not 
exist after integration. 

:For the triclinic, monoclinic and orthorhombic 
space groups the partial moments mvq are zero when 
either p or q is odd, but for higher symmetries non- 
zero moments exist for p odd and q even: in addition 
mlo and m0~ are zero for all symmetries. M m exist, 
for moments of intensity, only when both p and q 
are even (equation (15))" by equations (16) and (18) 
they are given by 

= I S~(1)dV. (21) Mvo 

= I S~(1)SqT(ll)dV" (22) Mpq 

3"3. Partial moments Mvo. The series expansions of 
Sr(1) for r = l ,  2 , . . . ,  8 are given in Appendix II. 
To illustrate the method of using these series we shall 
derive M60. 

By equation (21) 

M60 = 

whence, using equation 

M6o = I ST(6)dV+ 6 I 

+ 151 sT(2, 4) 

+20 1 ST(3, 1, 

+ 15 1 ST(2, 1, 

+ 45 1 ST (2, 2, 

+ I ST(l, 1, 1, 

I S~,(1)dV, 

(A14), 

ST(5, 1)dV+ 10 1 ST(3, 3)dV 

dV+60  1 ST(3, 2, 1)dV 

1, 1)dV+15 1 ST(4, 1, 1)dV 

1, 1, 1)dV 

1, 1)dV+ 15 1 ST(2, 2, 2)dV 

l, 1, 1)dV 

and therefore from equation (19), and omitting terms 
containing ml0, which is zero, we obtain 

Mso=m6oS(6) + 10m~0S(3 , 3) 
+ 15meom4oS(2, 4) + 15m~0S(2 , 2, 2) . 

Now, as in § A 1.4 (Appendix I) and using equation 
(A4), we derive the relations 

S(2, 4)=S(2) .S(4) -S(6) ,  
S(2, 2, 2)= S(2). S(2, 2) -2S(2 ,  4) 

= $3(2)+ 2S(6) - 3S(2). S(4) 
and 

S(3, 3)= Se(3) - S(6), 

whence, 

i 6 o =  15m23oS3(2)+ {15m2om4o-45m~o} S(2). S(4) 
+ 10m~0 S~(3)+ {m6o+ 30m~0-15m20m40-10m~0} S(6). 

3.4. Partial moments Mpq. As an example we shall 
derive M24. 

By equation (22), 

M24 = l S~(1)Sdr(ll)dV 

whence, using equations (A10) and (A12), 

M~ = S (sT(2)+ ST(l, 1)){ST(41)+4ST(31, 11) 
+ 6ST(21, 11, 11) + 3ST(21, 21) 

+ ST(I 1, 11, 11, l l)}dV. (23) 

Now by equations (AT) and (20) we have, for 
multiplications involving a single series, 

I ST(2)ST(41)~V= I ST(241)~V+ I ST(2, 41)~V 
= m24S(6) +m2omo4S(2, 4) 

I ST(2)ST(21, 21)dV 

2 S(2, 2, 2). = 2m22mo2S(4, 2)+mo2m2o 

I ST(2)ST(21, 11, 11)~V= I ST(221, 11, ll)~V 

+ 2 I ST(21, 211, 11)~V + I ST(2, 21, 11, 11)~V 
= m22m2olS(4, 1, 1)+2moem21molS(3, 2, 1) 

+ m2omoem~lS(2, 2, 1, 1). 

The last expression is zero since ml0=m01=0 and 
m p q  = 0 i f  q is  odd. Similarly the integrals of 

ST(2)ST(11, 11, 11, 11), ST(2).ST(31, 11) 
a n d  ST(41) .  S T ( l ,  1) 

are zero. 
:For the multiplications of double series we have, 

as in equation (A8) and by equation (20), 

l ST(l, 1)ST(31, V)dV 

= 2 l Sr(311, l l l ) d V + 2  1 ST(131, 1, 11)dV 

+21ST(31,111,1)dV+ IST(31, Xl, l, 1)dV 
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= 2m13m11S(4, 2)+2m13mlomolS(4, 1, 1) 

+ 2mo3mllmloS(3, 2, 1)+mosmo,m~oS(3, 1, 1, 1). 

I ST(l, 1)ST(2X, 1 ~, l~)dV 

41 s.(2~1, 1. ,  1~)~v+21 s.(2~, 11~, 11~)~v 

+ 2 1 S~(211' 1, 11, ll)dV 

41 s.(2~, 1.,  1,1~)~ + I ~.(2~, 1~, 1~, 1 ,1 )~  + 

_ ~ 2 
- -  4m~,m~mo~S(3, 2, l ) + 2 m o 2 m ~ S (  , 2, 2) 

+ 2m~m~om~S(3,1, 1, 1) 

+ 4mo2m~m~omo~S(2, 2, 1, 1) 
2 2 + mo2moimxoS(2 , 1, 1, 1, 1). 

The last  two expressions are zero since m~0=m0~= 
m~ = 0 and, by the same considerations, the  integral  
of ST(I, 1)ST(1 ~, 1 ~, 1 ~, 1 ~) is also zero. The remaining 
integral,  

I ST(l, 1)ST(2 ~, 21)dV 

= 2 1 ST(12~, 12~)dV+4 1 ST(12~, 2~, 1)dV 

I ST(2~, 2~, 1, 1)dV + 

= 2m~S(3,  3)+dm~2mo2m~oS(3, 2, 1) 
2 2 +mo2m~oS(2, 2, 1, 1), 

contains one non-zero term,  viz. 2m22S(3, 3). Oa 
adding all the  non-zero terms in equat ion (23) we 
have 

Mea=3m~.om~2S(2, 2, 2) + [m2omo4 + 6m~mo~} S(2, 4) 
+ 6m~2S(3, 3) +m~4S(6) 

which becomes, on using the relationships in § 3"3, 

3 M~4=3m2oms2S (2) 
-b {m2omoa + 6m22mo2- 9m2om2o~}S(2)S(4) 
+ 6m~.S~(3) 
+ {m~,-  m~omo~- 6m~mo~ - 6m~ + 6m~om~z } ~(6). 

3-5. Partial moments Mot .  Mot are the same as M~o 
with all m~o replaced by  mot, except t ha t  no odd 
moments  exist ;  for example 

M06= 15m0a~SS(2)+ {15mo2mod-45m3o2} S(2)S(4) 
+ {30m0a~ - 15mo2mo4 + mo6}S(6). 

3.6. Values of M~0 and Mpq,  calculated by  the 
methods described in § 3.3 and § 3.4, are presented in 
Appendix I I I .  They  are sufficient for evaluat ing the 
f irst  four moments  of in tens i ty  for all space groups 
in the triclinic, monoclinic and or thorhombic systems 
and for some, though possibly not  all, space groups 
of higher symmet ry .  The expressions in Appendix 3 
are simplified considerably for triclinic, monoclinic 

and or thorhombic space groups for all of which 
mpq = 0 when either p or q is odd (9 3-2) : the  simplified 
expressions have been used to evaluate  the moments  
presented in Pa r t  I I  (Foster & Hargreaves,  1963). 
Space groups of higher s y m m e t r y  are now under  
examination.  

3.7. Derivation of moments for P222. To i l lustrate  
the general procedure for deriving expressions for 
theoretical  moments  we shall consider the space group 
P222 for which 

A = cos 0 cos ~ cos v 2, B = sin 0 sin ~ sin ~o. 

The par t ia l  moments  mvq are obtained by  equation 
(17), which gives 

mvq = cosy 0 sina 0 cosP q9 sinq (p cosy ~ sinq yJ 
0 0 o 

dO dqJ dv2 
X - - - -  

(2xe) 3 

On integrat ion we obtain the numerical  results 

/20  /02  /22  /40  /04  /42  /24  /60  ~06 

in addit ion,  m~o=m12=0 for an or thorhombic space 
group (9 3.2). On subst i tu t ing these values in the  
expressions for M20, Mo2, M22, Md0, M0a, Mde, M2a, M6o 
and Mo6 (Appendix I I I )  and using equat ion (15) 
we obtain  

<I> = ~ ( 2 )  
<i~>= ~s~(2)-~s(4) 
<i3>= ~$3(2)_ 2~_~S(2).S(4)+d~S(6). 

For practical  reasons (Foster & Hargreaves,  1963) 
it  is preferable to work in terms of the variable  
z=I/<I> (9 1) and so, since 

<zr> = <Ir>/<I> r 

we have, finally, 

<z2> = 2 -  S(4)/4S2(2) 
<z3> = 6-- 9S(4)/4S2(2)+ S(6)/4Sa(2). 

The four th  and higher moments  of z can, of course, 
be derived in a similar way. 

The derivat ion of moment  expressions for centro- 
symmetr ica l  space groups is re lat ively simple since 
for such space groups equat ion (15) reduces to 
<Ir>=Mro. 

4. Atoms  in special posit ions 

4.1. Centrosymmetrical space groups. When some 
atoms are in special positions the most  general form 
which the s t ructure  factor can take is 
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F =  A Z, ficc~ + B 2 f~fl~ + C.~ f w~ + D .~  fid~ , (24) 
g sl  82 83 

where ~ is the summation over the atoms in general 
g 

positions and ~_2 ~ and ~ are the summations 
81 82 $3 

over the atoms in the three possible types of special 
position, i.e. with 2, 1 and 0 variables. For our 
purpose the constants A, B, C and D can be replaced 
by 21=B/A, 22=C/A and 2a=D/A because the final 
moments will be in terms of z; we shall therefore 
write equation (24) as 

F = G + X~St + X~S~ + ,~S~ (25) 
giving 

<It>= <(G + 2,S~ + 2~S~+ 2aSa)2r> . (26) 

Now the variables 0, q, and v 2 associated with G are 
different from those associated with S~, $2 and Sa; 
therefore 

<G 2r (21 $1)2t> ---- <G2r>< 22tS2t>, 
<(21S1)2r(22S2)2t>-- <(21Sl)2r><(22S2)2t> etc. 

which we represent by 

2t r t 21  2 2 < I 1 > < I 2 >  etc. 21<I~><I~>, 2, 2t , t 

On put t ing r =  1 in equation (26) we have 

<I> = </~> + 2~<~> + 2~</~> + 2~<h> (27) 

and if, in the notat ion of § 3.1, we put  a~ -- G, a2 -- 2~$1, 
a~ = 22S~, a4 = 2~S~ then 

<I~>= <Sa(1)>. 

For the space groups under consideration odd moments 
are zero, therefore 

<P>= <S(4)> + 3<S(2, 2)>= <a4> + :t~<S~> 

~ 2 ~ 2 / $ 2  \ / ~ 2 \  

2 2 2 + 212~<s~><s]>} 
or 

8 3 3 
2r<Ir > + 3 .~  ~ 2222s<Ir > <Is> 

r = l  r , s  
8 

+ 6<Ia> ~ 22<1r>. (28) 

Similarly 

<~r~> = <S(6)> + 15<S(4, 2)>+ 15<S(2, 2, 2)> 

giving 
3 3 

r=l  r=l  

3 3 8 
2 2 + 15<In> Z ~<I~> + 45<I~> ~ 2r2s<Ir><Is> 

r=l r , s  
3 3 

4 2  2 2 2 2  + 15 2 . .  2,2~ <1,><I~> + 90212~2~ <I~}<I2><Ia>. 
~,s (29) 

4.2. Non-centrosymmetrical space groups. The most 
general expression can be writ ten 

F = GR + 21S1R + 22S2~ + 28S3R 
+j(G± + 21St\ + 22S2x + ).3S3~) (30) 

in which the contribution for the r th  type of special 
position has been wri t ten as 

F = 2r(ZrR -} - jSr l )  • 

Following the notation of § 3.1, put t ing 

al = GR, ae = ~IS1R, as = 22SeR, a 4  = 2 a S a R  

bl = G~, be = ),1Sli, b3 = ~2S21, b4 = :t3S8i, 

we can write equation (30) as 

F=S(1)+jS(11)  (31) 
giving 

(X>= (S2(i) + S2(l I) ) = (S(2) + S(2 I) ) 

as only even powers are retained. Now 

<Io)= <G2R)+ <G~), <I1)= <S~R)+ <S~z) 

etc. ; therefore 

<I) = <Ig> + 2~<I1>-4- 2~<I2> + 2~<I3> . (32) 

The second moment  of intensity is 

(12> -- (Sa(1) + 2S2(I)$2(11)+ Sa(l I)> 
whence 

<12> = <S(4) > + 3< S(2, 2) > + 3<S(2~, 2 I) > 
+2<S(22~)>+2<S(2,21)>+<S(42)>. (33) 

If we now notice that 

<~>= <G~ + 2a~a~ + G~> 

and tha t  for these space groups 

<G~R>= <G}>= <Ig>/2 , 

with similar results for I1, I2 and I8, we deduce 

3 3 3 

r = l  r , s  
8 

+ 4<Ig> ~ '  2rg<Ir>. (34) 

Similarly, 
3 8 

<~> = <6> + z 2~<z~> + 9<z~> z 2~<x~> 
r=l  r=l 

3 8 3 
+ 9<~> z 2r~<~,~> + IS</~> ~ 2 2~2~<I~><~> 

r = l  r , s  
3 3 

+ 9 2 ~ 2~2~<x~><~,> + 3621 ~ :,~2~<~1><~2><1~>. 
r*s (35) 

5. Hypersymmetry 
It is possible in theory, though rarely in practice, 
to allow for the effects of hypersymmetry (Rogers & 
Wilson, 1953). As an example we shall consider the 
case of the asymmetric unit of ping consisting of K 
parallel centrosymmetrical sub-units. The effective 
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asymmet r ic  uni t  is now half  one of the  sub-units  
and  contains n/2K atoms, where n is the number  of 
atoms in  the asymmet r i c  uni t  of the  uni t  cell. Let  
x~-, yi be the  coordinates of the centre of s y m m e t r y  
of the j t h  sub-uni t  and  let x~r, yir be the coordinates 
of the i th  a tom in the j t h  effective asymmetr ic  uni t  
relat ive to the centre of s y m m e t r y  of the j t h  sub-unit .  
The coordinates of the i th  a tom relat ive to the origin 

t of the uni t  cell are therefore xl + x~r, y~ + yir. If  we now 
replace 2rehx}, 2~ky~ by  (%}, fl; and  2~hXir, 2:r~ky~r by 
0~, cf~ the  structure factor expression is 

F = 27 cos o¢; cos fl; 27 f ,  cos O, cos V, 
i= i  i = 1  

K nl2K 
+ 27 s in  (%~ s in  ~; 27 f ,  s in  0~ s in  ~ (36) 

i=1 i= i  

which can be wri t ten  as 

F = A ' A  + B ' B  . 

The c~, fl~ are independent  of 0~, ~ ;  therefore we 
have, on t ak ing  moments ,  

( I )  = M~oM~o + Mo~Mo~ 
(I~) = M4oMdo + 6 M ~ M ~  + Mo4Mo4 
( i n ) =  M~oi~o+ 15M~zM4~ + 1 5 i ~ i e 4  + i o ~ i o ~ ,  (37) 

where 

Now because the  expressions for A1 and B 1 are of 
the  same form as those for A and B we need only 
derive the par t ia l  moments  Mrs, M~ being direct ly  
obtainable  by  put t ing  f~ equal  to un i ty  in  the ex- 
pression for Mrs and assuming tha t  there are K equal  
atoms. Any  series S~(a), therefore, in the  expression 
for M~ becomes K ~ in  the expression for M~. The 
par t ia l  moments  mrs are 

m20 mo~. 7Y~22 m40 ?no4 m42 Tt¢24 m60 too6 
1 1 1 9 9 1___ _!_1 2 5  25 
4 4 64 64 64 256 256 256 25--6 

and, using the expressions for Mrs given in Appendix  3, 
we have 

M~0= Mo~= S(2)/4, M i 0 =  M0~= K/~ 
M~.=S~(2) /16-3S(4) /16,  M~,---K~/16-3K/16 

314o= Mo~= 3S~(2)/16- 3 S(4)/16, 

M~o = Mo~= 3K~/16 - 3K/16 

which give, by  equat ion (37), 

( I )  =KS(2) /8  

( I~)= ~(2Ke-~K)Se(2) -~-~(K~-½K)S(4)  . 

Similar ly  

( I  ~) = ~-~{90K ~ - ~ g  ~ + ~K}  S~(2) 
; 4 o ~ _  135K ~' + ~-~K}S(2) S(4) - -  5 - i ~ k - i - . .  

+ ~-~(~K~-~aKe+ 25K}S(6) .  

A P P E N D I X  I 

AI.1. The series S(c~l, (%2, . . . ,  C~m) (§ 3"1) consists of 
te rms of the type  ,',~.~a. ~.2 a .~ (il ~:i~.:~ ~=im)" f rom ~$I ~ 2  " " " ~ / ~  " " " ' 

s y m m e t r y  i ts  value is invar ian t  wi th  respect to 
permuta t ions  of the indices c~. Let  SK((%~, (%2, • • . ,  (%m) 
represent the m-tuple series which does not  contain 
a par t icular  te rm an and let us assume tha t  

S((%~, ~2, . . . ,  (%m) 
m 

= ...Ya~:A~((%I, (%~, . . . ,  (%i-1, ~xi+l, . . . ,  (%m)+R, (A1) 
i = 1  

where A~ is a series whose terms do not  have ~ as 
an  index. On pu t t ing  a K =  0 we have  R - -  
SK(~l, a2, . . . ,(%m), and from the defini t ion of 
S(al ,  (%2, . . . ,  (%m) (§ 3.1) the coefficient of a~ ~ in  (A1) 
is SK((%e, a3, . . . ,  (%m). If (%~ and  (%1 are in terchanged 
the series S(al,  (%2, . . . ,  (%m) is unchanged,  and  there- 
fore the coefficient of a~ ~ is unchanged,  giving 

~i((%t, (%2, • • • ,  (%i-1,  (%i+1, • • • ,  (%m) 

= S~((%~, (%~, . . . ,  (%~, . . . ,  ~m) ,  
from which 

A i ( ( % l ,  (%2, • • . ,  (%i-1,  o~i+1 . . . .  , O~m) 

= 8~((%~, ~ ,  . . . ,  (%~-1, ~l, ( % , ,  . . . ,  (%m) 

giving, f inally,  

S(~l,  (%2, . . . ,  (%m) 

= ~ a?~ S . ( ~ ,  (%~, . . . ,  (%,_1, (%,÷~, . . . ,  ~m) 
i = l  

+ Sn((%l, (%,., . . . ,  (%m) • (A2) 

Another  result  which follows immedia te ly  from the 
definit ions of S and Sn is 

a~  Sn((%l, (%2, . . . ,  (%,-1, a,+l . . . .  , (%m) 
K = I  

= S(al,  a~, . . . ,  (%m) • (A3) 

A1-2. Multiplication of series. Consider the product  
a~KS(al, a 2 , . . . , a m ) .  From equat ion (A2) we have 

a ~ S ( a l ,  (%2, . . . ,  (%m) 
m 

= 2: a~+~SK((%I, (%2, . . . ,  (%~-1, (%i+1, . . . ,  (%m) 
i=l 

Therefore, on summing over K and using equat ion 
(A3), 

S ( ~ ) .  S(~1, (%2, . . . ,  (%m) 
m 

---- 2 7  S((%1, (%2, . . . ,  (%i-1,  (%~-~-fl, 0¢/+1, . . . ,  0~m) 
i = 1  

+ S(fl, (%1, ~2, . . . ,  ~m) .  (A4) 
Example 

s ( 0 ) .  s((%,/~, 7 ) =  s ( 0  +(%, fl, 7 ) +  s ( 0  + ~ ,  (%, 7) 

+ s(o+7, (%, ~)+ s((%, ~, 7, o). 
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Cons ide r  t h e  product a~SK(82) .S(o¢I ,  ~ s , . . . ,  O~m) 
which, by equation (A2), can be writ ten as 

a ~ + ~ . ( S s ) .  ~ . ( ~ ,  ~s, . . . ,  ~-~, ~÷~, . . . ,  ~ )  
i = l  

+a~K(SS)SK(~l,  ~., . . . ,  ~m). 

On using equation (A4) we obtain 

m 
.~ a~ +ai 

× - / z  . . . ,  

¢j¢i 

m 

+ a ~ ( 8 , ,  ~1, ~% . . . , ~ )  

and on summing over K we have, finally, 

= 
i=1 ]¢i 

× ~(~,  ~ ,  . . . ,  ~ +8~, . . . ,  ~-~, ~ +8~, ~+~, . . . ,  ~ )  
m 

~- ~ {~(~2, 0~1, Or2, . . . ,  O~i-1, Oti-~-81, 0/i+1, . . . ,  OCm) 
i=1 

+~(~1, ~1, ~2, . . . ,  ~i-1, ~i+82, ~i+1, . . . ,  ~m)} 

+ S(~ ,  ~,, . . . ,  ~ ,  8~, ~ )  • (AS) 

There are four types of term in equation (A5); 
those in which fll and 8~. are added simultaneously to 
different ~'s, those in which fit is added to an c¢~ and 
82 included as an extra index, those in which 8~ is 
added to an ~ and 8~ included as an extra index an4 
those in which 8~ and 8e are included as extra indices. 

Examples 
~(~, ~). ~(~, 0) 

= ~(~ +~, ~ + 8 ) +  ~(~ +~, ~ + ~ ) +  s ( ~  +~ ,  8, ~) 
+ ~(~ + r ,  8, ~)+ ~(~, ~+~,  8)+ ~(~, 8+~,  ~) 
+~(~,  ~, ~, ~) 

S(3, 1). S(2, 1, 1) 
=S(5,  1, 1, 1)+2S(2,  4, 1, 1)+S(2,  3, 1, 1, 1) 

+~(3,  3, ~, ~)+2~(3, 2, 2, ~)+2s(5,  2, 1) 
+ 2S(4, 3, 1) + 2S(4, 2, 2). (A6) 

The rules for multiplication by m-tuple series can 
be established by an induction procedure; they  are 
similar to those for double series, 8~, fie, . . . ,  8r being 
added simultaneously to different a's, 8~, 82, . . . ,  8r-~ 
being added simultaneously to different a 's  and 8ir 
being included as an extra index and so on. For 
example, in the product $2(2, 1, 1) the additions in 
groups of three give 2S(4, 2, 2)+4S(3,  3, 2); the fac- 
tors 2 and 4 arise because 2, 1, 1 and 2, 1, 1 can be 
added to give 4, 2, 2 in two ways, the two l ' s  being 
considered distinct; similarly 2, 1, 1 and 2, 1, I can 

be added to give 3, 3, 2 in four ways. On taking all 
groups into account we obtain, finally, 

Se(2, 1, 1)=2S(4,  2, 2)+4S(3,  3, 2)+4S(4,  2, 1, 1) 
+2S(2,  2, 2, 2)+4S(3,  3, 1, 1)+8S(3,  2, 2, 1) 
+ 4S(2, 2, 2, 1, 1)+4S(3,  2, 1, 1, 1)+ S(4, 1, 1, 1, 1) 
+ s(2 ,  2, ~, ~, ~, ~). 

A1.3. The series S(fl 1) and S(a181, as, . . . ,  am) were 
defined in § 3.1: to find the multiplication rule for 
products of the type  S(fll)S(c~l, a2 . . . .  , CCm) we con- 
sider the term b~S(a~, as, . . . ,  am). From equation 
(A2) we have 

b~S(al, 0~2, . . . , a m )  

ai f~ • • . ,  0~m) 
i = l  

+b~S~(a l ,  a2, . . . ,  a~)  

and on summing over K we have 

S(8~). S(a~, as, . . . , a ~ )  

= ~ S(~, ,  ~s, . . . ,  ~-1,  ~ ,  ~,÷~, . . . ,  ~ )  
i=1 

+ S(8 i, ~i, ~s, . . . ,  ~m) • (A7) 

The multiplication rule in this case is formally the 
same as tha t  in equation (Ad), a~fl 1 replacing a~+8, 
and it can be shown by the same method as before 
tha t  the rules for multiplication by m-tuple series 
containing bds are analogous to the previous ones; 
but, of course, the symbols must  be interpreted 
according to the new definitions. Thus, by analogy 
with equation (A6), 

S(~,  8) ,  S(~ 1, ~1) 

= s(~yl, 8 ~ ) +  s (~1 ,  8r~)+ s (~1 ,  ~, r ~) 
+ s(~y~, 8, ~ ) +  s(~, 8~ 1, ~ ) +  ~(~, 85 ~, y~) 

+ s(~, 8, ~1, 8~). (AS) 

A1.4. From the relationship 

S ( ~ ) .  S(~1, ~s, . . . ,  ~ - 1 )  

= 8 ( ~ 1 + ~ ,  ~2, . . . ,  ~ - 1 ) +  • • • + 2(~1, ~s, . . . ,  ~m) 

we have 

- -  series of order ( m - 1 )  . (A9) 

The series of order ( m - 1 )  can similarly be reduced 
to series of order ( m - 2 ) ,  a process which can be 
continued until only products of single series remain. 
Any m-tuple series can therefore be expressed in 
terms of single series only. 

Example 
2(2, 1, 1)= S(2). S(1, 1 ) -  2S(3, 1) 

= S(2){$2(1)- S ( 2 ) ) -  2{S(3)S(1) - S(4)} 
-- Ss(1)S(2)-  $2(2)-  2S(3). S(1)+ 2S(4). 
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APPENDIX II M24= 

S~(1)= S(2)+ S(1, 1) (A10) 

S ~ ( 1 ) = S ( 3 ) + 3 S ( 2 ,  1)+ S(1, 1, 1) (All) 

Sa(1)= S(4) + 4S(3, 1)+ 3S(2, 2) + 6S(2, 1, 1) 
+S(1, 1, 1, 1) (A12) 

s~(1)= S(5) +5S(4, 1)+ 108(3, 2)+ 108(3, I, I) 
+ 158(2,2, 1)+ 10S(2, I, i, i) 
+S(1, 1, I, 1, 1) (A13) 

S~(1) = S(6) + 6S(5, 1)+ 10S(3, 3)+ 15S(2, 4) 
+60S(3, 2, 1)+20S(3, 1, 1, 1)+ 15S(4, 1, 1) 
+ 15S(2, 1, 1, 1, 1)+45S(2, 2, 1, 1) 
+ 15S(2, 2, 2)+ S(1, 1, 1, 1, 1, 1) (A14) 

S,(1)= S(7)+ 7S(6, 1)+ 21S(5, 2)+ 21S(5, 1, 1) 
+ 35S(4, 3) + 70S(3, 3, 1) + 105S(4, 2, 1) 
+ ~05S(3, ~, ~ )+~0S(3 ,  ~, 1, 1)+35S(4, ~, ~, ~) 
+35S(3, 1, 1, 1, 1)+ 105S(2, 2, 1, 1, 1) 
+21S(2, 1, 1, 1, 1, 1)+ 105S(2, 2, 2, 1) 
+S(1, I, I, I, 1, 1, I) (A15) 

Ss(1)= S(8) + 8S(7, 1) + 28S(6, 2) + 28S(6, 1, 1) 
+56S(5, 3)+ 168S(5, 2, 1) +56S(5, 1, 1, 1) 
+ 35S(4, 4)+280S(4, 3, 1)+ 280S(3, 3, 2) 
+280S(3, 3, 1, 1)+210S(4, 2, 2) 
+ 420S(4, 2, 1, 1) + 840S(3, 2, 2, 1) + 
+560S(3, 2, 1, 1, 1)+70S(4, 1, 1, 1, 1) 
+56S(3, 1, 1, 1, 1, 1) +420S(2, 2, 2, 1, 1) 
+210S(2, 2, 1, 1, 1, 1)+28S(2, 1, 1, 1, 1, 1, 1) 
+ 105S(2, 2, 2, 2) + S(1, 1, 1, 1, 1, 1, 1, 1) (A16) 

M~o-- m~oS(2) 

-/]//40 = 

M6o -- 

.M80 

M22 

APPENDIX III 

P a r t i a l  moment s  M p q  

3mloSe(2) + {mao-- 3m~o}S(4 ) 

15m~oS~(2) + {15meomao-45m~o}S(2). S(4) 
+ 10m~oS~(3) 
+ {30m~o- 15meom4o- 10m~o + m6o}S(6) 

105m~oSa(2) + {28meom6o- 280m~om]o 
- 420m~omao + 840m~o } S (2). S(6) 
+ 280meom~oS(2) Se(3) 
+ {210m~om4o- 630m~o}Se(2)S(4) 
+ {3~5mIo + 3 5 ~ o -  2 1 0 m ~ o ~ o } S ~ ( ~ )  

+ {56m~om~o-- 560m~om~o}S(3). S(5) 
+ {560m~.om~o - 28m~om6o + 420m~om4o 

4 2 
- -  630m2o-- 56m~om~o-- 35mao + m8o}S(8) 

meomo2S~'( 2 ) + (m~2 - m2omoe } S ( 4 ) 

M42 --- 

M44 

M62 - -  

M26 

3m2om~2SS( 2 ) + (m2omo4- 9m2om~2 
+ 6m22mo2)S(2). S(4) + 6m~2S~(3) 
+ {6meom~)2 - m2omoa - 6m22moe + m24 - 6 m ~  ) S (6) 

3m~omoeS 8(2) + {mo2mao - 9mo2m~o 
+ 6m22m2o)S(2)S(4) + 4mmmsoS2(3) 

+ {6m~omo2 - mo~m4o - 6m22m2o + m42 

-4ml~mso)S(6)  

9m~om~)2S4(2) + {36m~omo2m2~ - 54m~omo22 
+ 3m~omo4 ° 2 +3m52m~o}S (2). S(4) 
+ {27 m~om~ - 3m~omo4 -- 36m~omo~m2~ 
-- 3m~o~4o + lS~n~. + m4omo4}S~(4) 
+ { 6m~o,n~ -- 72 m~o,no~m2~ + 72,n~o,n~o~ -- 6mlo,no~ 

2 2 o -- 36meom12 -- 6m52m4o + 6moem,m -- 24mo2mlg.m3o} 

× S(2). S(6) + {36m2om~2 
+ 24,no~n~m~o}S(2). S~(3) + {4,n~om, 
+ 24maemle -- 72m2om~2 -- 48moem12m3o} S(3). S(5) 
+ {72m2om~2 + 72meomo2m2~. - 6m2ome4 

2 2 - 54meomo2 + 6m2omo4- 6mo2m42 + 48mo2ml~.m3o 

+ 6m29m4o + m 4 4 -  mo4m4o - 18m22 -- 24mlem89. 

-4m14m3o}S(8) 

15m~omo2 S 4 (2) + { 15m2omo2m,m + 45m~om2~ 
- 90m~omoe}S2(2). S(4)+ {45m~omoe 
- 15meom~omo~-45m~omee + 15me~m4o}Se(4) 

+ { 15m2om42 - 30meomo~m,m - 60meom~oml,z, 
2 3 -- 90meom~.~. + 120meomoe + m6omo~ 

-- 10m~omo~.}S(2 ) . S(6)+ {60meom~om~e 

+ lOm~omo~}S(2). Se(3)+ {20m~oma~ 
- 120meomaom~ - 20m~omoe + 6m~om~e}S(3). S(5) 
+ {30m~omoem4o + 120meom~em~o- 15m~oma~ 

2 3 + 90m~om~ -- 90m~omo~ -- 15m2~m4o + m6u 
+ 20maomoe -- 20maoma~ -- 6m~om~e 

-m6omoe}S(8) 

15meomao~ S a (2) + {15meomoemo4 + 45meem~oo 

- 90~omo~}s~(2). s (~)+ {~5m~omo~ 
-- 15meomo2mo4 -- 45meem22 + 15meemo4}S e (4) 
+ {m~.omo6 + 120meomao~ - 30m~omoemo4 
- 90m~2m2~ + 15mo~m2a- 90mo~m2~}S(2). S(6) 

+ 90mo~m~2S(2). S(3)+ {30m~m~4 
- -  180mo~m~e } S(3). S(5) + {30meomo4mo~ 
- 90meomoa~ - meomo6 + 90meem~oe - 15me4moe 
-~- m26 - 15meemo4 - 30m~ml4 + 180moem~}S(8) 

APPENDIX IV 

The geometrical structure factor of the plane group 
p6 is 

A = cos 2~(hx  + ky) + cos 2 g { k x -  (h + k)y} 

+ cos 2 ~ { h y -  ( h + k ) x } .  (A17) 
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In  order to show t h a t  the  moments  of A do not  
depend on a l inear relat ionship between h and  k 
let us assume t h a t  Arlh=Arek, where Arl and  Ar9 are 
integers,  and  therefore we can pu t  h=Ne~t,  k = N ~ t ,  
where A varies in such a way  t h a t  h and k assume 
integer values. I f  we now in terpre t  2sAx and  2s~ty 
as independent  r andom variables,  0 and ~ respec- 
t ively,  equat ion (A17) becomes 

A = cos ~ + cos fl + cos (~ +f l ) ,  
where 

a =NeO +Arlq~, fi =NIO - (Arl +Are)of. 

The r th  moment  of A is now 

~(0, q~) dadfl/4:ne, (A r> = ~ Ar(~x' ~) 

where the  Jacob ian  is (Ar~ +ArlAre +Ar~)-i and  the  
integrat ion is t a k e n  over the  paral le logram P with 
vertices a t  (0, 0), (2~rArl, 2zAre), ( -2gAr2 ,  2z(Arl +Are)) 
and  ( -2~(Ar l+Are ) ,  2zArl). Let  I be 

on enclosing P in a rectangle R with sides of length 
2~r(N1 + Are), 27~(2N1 + Are) parallel  to the  axes c¢ and  fi, 
the  integral  of A r over R is (Arl+Are)(Are+2N1)I. 
Now from the periodicity of the  function A and  from 
the fact  t h a t  the  vertices of P ' a n d  R have coordinates 
which are multiples of 2~, the integral  of A r over the  
areas  which are not  common to P and  R is equal  to 
(N2+21V1Ne)I: therefore,  the  integral  of A r over P 
is (N~ + N1N2 + Ar2)I from which 

(/V21 + -hT1Are + Are2) -1 .~ffP Ar(O~' ~)docdt~ 

o o 

The var iables  AreO+Nlcf and N l O - ( N l + N e ) c f  can 
therefore be replaced by  c¢ and fl, which are uniformly 
d is t r ibuted  in the  range (0-2~) ,  and  the  moments  
of A 2r are independent  of N1 and  N2 giving 
A = cos c~ + cos fl + cos (~ +fl) as the  effective geomet- 
rical s t ruc ture  factor  for s ta t is t ical  purposes. I f  we 
now pu t  0 = ( ~ + f l ) / 2  and  ~v=(c~-fl)/2 a similar 
analysis  to the  above leads to A = cos 20 + 2 cos 0 cos 
as another  form for the purposes of s ta t is t ical  analysis.  

We wish to t h a n k  Prof. L . R .  Shenton for his 
interest  and advice on s ta t is t ical  mat ters .  
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II .  P r a c t i c a l  A p p l i c a t i o n  
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(Received 25 January 1963) 

Simple expressions for evaluating theoretical moments of the intensities of X-ray reflexions are 
tabulated. They cover crystals with any triclinic, monoclinic or orthorhombic space group and they 
are valid when the unit cell contains a small number of atoms and atoms of widely differing weights; 
consideration is given to the modifications required when atoms are present in special positions. 
The evaluation and comparison of theoretical and experimental moments are described and illus- 
t rated by examples which could not have been studied by the usual statistical tests. 

1. Introduction 

The r th  moment  of the  in tens i ty  of a group of X - r a y  
reflexions, <Ir}, is defined as the  average value of P ,  

where values of I represent  the  intensit ies of the  
individual  reflexions. 

The methods described in P a r t  I (Foster & Har -  
greaves, 1963), for deriving theoret ical  moments  of 


